Towards Floer theory and Fukaya categories for Generalized Complex Manifolds: Some first ideas

Charlotte Kirchhoff-Lukat

23-Mar-2021, 15:00-16:00 (5 years ago)

Abstract: Generalized complex (GC) manifolds encompass both symplectic and complex manifolds as examples. From the inception of the field of GC geometry in the early 2000s, questions have thus been raised about its relation to mirror symmetry: Can mirror symmetry be understood as a generalized complex duality, and if so, how? An answer to this general question currently seems out of reach both from the point of view of mirror symmetry, as well as GC geometry -- general GC manifolds are so far relatively poorly understood. However, I have identified a number specific initial questions and approaches which I hope will ultimately help a more general understanding. These ideas -- currently still in their infancy -- are what I would like to outline in this talk.

algebraic geometrydifferential geometrygeometric topologysymplectic geometry

Audience: researchers in the topic


Free Mathematics Seminar

Series comments: This is the free mathematics seminar. Free as in freedom. We use only free and open source software to run the seminar.

The link to each week's talk is sent to the members of the e-mail list. The registration link to this mailing list is available on the homepage of the seminar.

Organizers: Jonny Evans*, Ailsa Keating, Yanki Lekili*
*contact for this listing

Export talk to